Phonological and Semantic Consolidation of Novel Words in Monolingual and Bilingual Children

Caitlyn Slawny,1 Margarethe McDonald,2 Margarita Kaushanskaya1

1University of Wisconsin – Madison, 2University of Kansas

Introduction

Complementary systems framework (e.g., McClelland et al., 1995)
- Children consolidate new words into existing networks (e.g., James et al., 2017)
- Requires time and sleep (e.g., Henderson et al., 2012)
- Consolidation for both phonological and semantic networks has yet to be examined

Weaker links hypothesis
- Bilingual children thought to have weaker links between phonology and semantics within each of their languages, as compared monolinguals (e.g., Gollan et al., 2008)
- If weaker language-specific networks affect consolidation, bilinguals would show reduced consolidation

Research Questions

1. Do newly-learned English words consolidate within English phonological and semantic networks for monolingual children?
2. Do newly-learned English words consolidate within English phonological and semantic networks for bilingual children?

Experiment 1: Monolinguals

<table>
<thead>
<tr>
<th>Participant Characteristics</th>
<th>M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>34 (19 boys)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>4.79 (0.53)</td>
</tr>
<tr>
<td>Mother’s years of education</td>
<td>17.06 (1.66)</td>
</tr>
<tr>
<td>Nonverbal IQ</td>
<td>107.65 (14.31)</td>
</tr>
<tr>
<td>Numbers Reversed English</td>
<td>112.60 (9.90)</td>
</tr>
<tr>
<td>PLS Composite</td>
<td>115.35 (13.93)</td>
</tr>
</tbody>
</table>

Word learning task
- Monolingual children learned 6 English-like novel words (e.g., lipe, nem) in a teaching-to-criterion manner

Example
- Look at this nem. A nem is a type of food.
- A nem is very crunchy. You have to wash a nem to eat it.

Experiment 2: Bilinguals

<table>
<thead>
<tr>
<th>Participant Characteristics</th>
<th>M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>29 (17 boys)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>5.05 (0.46)</td>
</tr>
<tr>
<td>Mother’s years of education</td>
<td>17.15 (4.15)</td>
</tr>
<tr>
<td>Nonverbal IQ</td>
<td>100.89 (15.26)</td>
</tr>
<tr>
<td>Numbers Reversed English</td>
<td>103.37 (14.99)</td>
</tr>
<tr>
<td>Numbers Reversed Spanish</td>
<td>93.57 (16.85)</td>
</tr>
<tr>
<td>BESA Composite</td>
<td>106.00 (10.69)</td>
</tr>
</tbody>
</table>

Word learning task
- Bilingual children learned the same 6 English-like novel words (e.g., lipe, nem) in 6 teach-test blocks

Testing Procedure

- Consolidation was tested via co-activation (e.g., Allopenna et al., 1998) with a visual world paradigm task immediately after learning (Day 1) and a day later (Day 2)
- At test, 4 images were presented: 2 represented familiar English words and 2 represented novel words
- Phonological consolidation: auditory target was an English word that shared phonological onset with the novel competitor (e.g., lightbulb – lipe)
- Semantic consolidation: auditory target was the novel word that shared semantic category with English word (e.g., nem, a type of food - orange)

Experiment 1: Results

- Monolingual: Phonological Competition
- Monolingual: Semantic Competition

Experiment 2: Results

- Bilingual: Phonological Competition
- Bilingual: Semantic Competition

Discussion

- Neither the complementary learning systems framework nor the weaker links hypothesis explain the findings
- We find little evidence of stronger co-activation on Day 2 in either bilinguals or monolinguals
- We infer consolidation based on competition between newly-learned novel words and familiar English words
- Competition likely depends on depth of encoding for novel words
- Future directions: controlling for word learning accuracy and language ability (Malins et al., 2019)

We acknowledge and thank all the families who participated and the members of the Language Acquisition and Bilingualism Lab

Disclosures: Caitlyn Slawny, Margarethe McDonald, and Margarita Kaushanskaya have no conflicts of interest

This study was funded by NIH grants R01 DC011750, R01 DC016015